If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7.5x^2+4x-90=0
a = 7.5; b = 4; c = -90;
Δ = b2-4ac
Δ = 42-4·7.5·(-90)
Δ = 2716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2716}=\sqrt{4*679}=\sqrt{4}*\sqrt{679}=2\sqrt{679}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{679}}{2*7.5}=\frac{-4-2\sqrt{679}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{679}}{2*7.5}=\frac{-4+2\sqrt{679}}{15} $
| 6u+7=19 | | 2(x-6)=4x(2x+12) | | 2x+5/7=x/6 | | 8(5x+8)=6x | | x/8-2=-10 | | 11(y−2)+3y=−7y+14 | | (-16x+13)+(20x+13)=180 | | 4x+2(-5+3x)=1-x | | 64=8x+16 | | -29=1y-3 | | -16x+13+20x+13=180 | | 15x^2+x=-6 | | 160+.20x=80+.30x | | 12u-7u=5 | | 5-3x/4=10 | | 9y–1=y–25 | | 0.5(10x-2)+3=14 | | 6x/8=3 | | 5b+6b=4b+b | | 7+9x=10+8x | | (3x+25)=(x-25) | | -9(x-2)=-72 | | x/2+8=6 | | 4/5x+8=5/6x | | (7x+24)=(2x+9) | | 18=y|14 | | 25=27x-18 | | 18=y|4 | | (7x-4)=(3x+14) | | 2.5=x-4/1.2 | | y=0.08+12 | | X+2x+2x-40°=180° |